- Lyapunov dimension
- ляпуновская размерность
The New English-Russian Dictionary of Radio-electronics. F.V Lisovsky . 2005.
The New English-Russian Dictionary of Radio-electronics. F.V Lisovsky . 2005.
Dimension — 0d redirects here. For 0D, see 0d (disambiguation). For other uses, see Dimension (disambiguation). From left to right, the square, the cube, and the tesseract. The square is bounded by 1 dimensional lines, the cube by 2 dimensional areas, and… … Wikipedia
Lyapunov exponent — In mathematics the Lyapunov exponent or Lyapunov characteristic exponent of a dynamical system is a quantity that characterizes the rate of separation of infinitesimally close trajectories. Quantitatively, two trajectories in phase space with… … Wikipedia
Lyapunov exponents — A measure of the dynamics of an attractor. Each dimension has a Lyapunov exponent. A positive exponent measures sensitive dependence on initial conditions, or how much our forecasts can diverge based upon different estimates of starting… … Financial and business terms
Lyapunov-Exponent — Der Ljapunow Exponent eines dynamischen Systems (nach Alexander Michailowitsch Ljapunow) beschreibt die Geschwindigkeit, mit der sich zwei (nahe beieinanderliegende) Punkte im Phasenraum voneinander entfernen oder annähern (je nach Vorzeichen).… … Deutsch Wikipedia
Fractale De Lyapunov — Pour les articles homonymes, voir Lyapunov. Fractale de Lyapunov avec la séquence AB … Wikipédia en Français
Fractale de Lyapunov — Pour les articles homonymes, voir Lyapunov. Fractale de Lyapunov avec la séquence AB … Wikipédia en Français
Fractale de lyapunov — Pour les articles homonymes, voir Lyapunov. Fractale de Lyapunov avec la séquence AB … Wikipédia en Français
Chaos theory — This article is about chaos theory in Mathematics. For other uses of Chaos theory, see Chaos Theory (disambiguation). For other uses of Chaos, see Chaos (disambiguation). A plot of the Lorenz attractor for values r = 28, σ = 10, b = 8/3 … Wikipedia
Chaotic mixing — An example of chaotic mixing In chaos theory and fluid dynamics, chaotic mixing is a process by which flow tracers develop into complex fractals under the action of a time varying fluid flow. The flow is characterized by an exponential growth of… … Wikipedia
Competitive Lotka–Volterra equations — The competitive Lotka–Volterra equations are a simple model of the population dynamics of species competing for some common resource. They can be further generalised to include trophic interactions. Contents 1 Overview 1.1 Two species 1.2 N… … Wikipedia
Coupled map lattice — A coupled map lattice (CML) is a dynamical system that models the behavior of non linear systems (especially partial differential equations). They are predominantly used to qualitatively study the chaotic dynamics of spatially extended systems.… … Wikipedia